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Purpose: This work aims to establish a classification framework for the diagnosis of mild cognitive
impairment (MCI) at different stages (early MCI and late MCI) through direct analysis of resting-
state functional magnetic resonance imaging (rs-fMRI) signals and using the accuracy (total correct
rate), specificity (correct rate of late MCI) and sensitivity (correct rate of early MCI) to validate its
classification performance.
Methods: All fMR images of subjects were parcellated into 116 regions of interest (ROIs) by apply-
ing the Anatomical Automatic Labeling (AAL) template, and the average rs-fMRI signals of each
ROI were extracted. The Hilbert-Huang transform (HHT) was introduced into the framework to
decompose each rs-fMRI signal into a series of intrinsic mode functions (IMFs) and to analyze these
nonstationary and nonlinear time-series from the perspective of multiresolution. After obtaining the
instantaneous frequencies and amplitudes of all IMFs of a signal, the Hilbert weighted frequencies
(HWFs) were calculated and combined into a vector as the feature of the corresponding ROI. Support
Vector Machine (SVM) was implemented to classify MCI at different stages. We used the indepen-
dent two-sample t-test as the feature selection method and measured the classification performance
through the leave-one-out cross-validation (LOOCV) method.
Results: Results on 77 early MCI (eMCI) and 64 late MCI (lMCI) with baseline rs-fMRI data from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) yielded 87.94% classification accuracy.
Some of the brain regions with significant differences found by previous studies have been confirmed
in this work. We found that HWF characteristics exhibited a significant downward trend in all cere-
bellar regions. The rs-fMRI signals in differential brain regions have not changed completely, but
only altered in some narrow frequency bands. The analysis results showed that during the progress of
MCI, the main changes of rs-fMRI were concentrated in IMF3, while IMFs with other indexes also
contained HWF features with high SVM weights, such as Orbitofrontal superior frontal gyrus in
IMF2, Insula in IMF4, and Lobule Ⅲ of vermis in IMF5, indicating that other IMFs provide impor-
tant information for the diagnosis of MCI as well.
Conclusions: This work confirmed the classification ability of HHT-based classification framework
in classification of at different stages of MCI. Through the analysis, we found that during the progress
of MCI the main changes of rs-fMRI were concentrated in IMF3, and HWF characteristics showed a
significant downward trend in all cerebellar regions. © 2020 American Association of Physicists in
Medicine [https://doi.org/10.1002/mp.14183]
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1. INTRODUCTION

Alzheimer's disease (AD) is a chronic neurodegenerative dis-
ease and the most common cause of dementia among older
adults. Patients often suffer from a loss of cognitive function
and behavioral abilities, which imposes a substantial burden
that includes social, psychological, physical, and economic
elements both on the patient and caregiver. In developed
countries, AD is one of the most financially costly diseases.1

Mild cognitive impairment (MCI), a prodromal stage of AD
with great potential to progress to AD,2 has recently attracted

increasing attention. Moreover, an early treatment for MCI
may prevent or at least delay the progression of the disease
and preserve some cognitive functions of the brain. There-
fore, an accurate diagnosis of MCI is of great importance.

Since the inception of resting-state functional magnetic
resonance imaging (rs-fMRI),3 this advanced medical imag-
ing technique has attracted increasing attention. Spontaneous
brain activity has been measured using blood oxygen level-
dependent (BOLD) signals obtained from rs-fMRI.4 Many
rs-fMRI studies have explored various approaches to diag-
nose MCI. Methods combining the functional connectivity
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network (FCN) with multikernel learning (MKL) technology
were proposed to diagnose MCI.5,6 Wee et al.7 focused on
integrating diffusion tensor imaging (DTI) and resting-state
functional magnetic resonance imaging (rs-fMRI) informa-
tion obtained using a multikernel support vector machine
(SVM) to improve the diagnostic accuracy of MCI. By
advancing an objective basis for optimizing the functional
network representation of general multivariate time-series,
Zanin et al.8 analyzed the functional activity network in the
brain of patients with MCI and established a diagnosis. Addi-
tionally, dynamic connectivity networks (DCNs) were
applied to classify MCI9 and achieved better classification
performance (significant improvements in accuracy, speci-
ficity, and sensitivity) than the conventional stationary-based
FCNs. Chen et al.10 introduced the functional correlation ten-
sor (FCT) based on rs-fMRI into the MCI classification to
describe the local structural pattern of functional connectiv-
ity. Recently, Yu et al.11 used a new regularized sparse repre-
sentation framework of a weighted graph to optimize
functional brain networks and significantly improved the
accuracy of the MCI diagnosis.

However, some aspects remain to be further studied in
the field of MCI diagnosis. On the one hand, only a few
studies have investigated the diagnosis of MCI at different
stages. By conducting human connectome project multi-
modal parcellation (HCPMMP), Sheng et al.12 imple-
mented an early MCI (eMCI)/late MCI (lMCI)
classification using a small dataset. Jie et al.13 integrated
the temporal and spatial properties of DCNs as features
and obtained an accuracy of 78.7% in classifying eMCI/
lMCI. Much room for improvement exists in the classifi-
cation of different stages of MCI. On the other hand, most
of these methods focused on functional connectivity in the
brain and did not consider the variation in the BOLD sig-
nal itself. Previous studies have shown widespread differ-
ences in the frequency in some brain regions of patients
with MCI, particularly in the low-frequency band.14–17 The
amplitude of low-frequency fluctuations (ALFFs) in some
brain regions change with a linear trend during the pro-
gression of MCI.18 This evidence confirms the significant
changes in the frequency characteristics of the brain dur-
ing the progression of MCI, indicating that precise fre-
quency variations in specific brain regions may provide
important information for the MCI diagnosis. The Hilbert-
Huang transform (HHT) is an effective adaptive signal
processing method that is good at analyzing nonstationary
and nonlinear signals. By decomposing the signal into a
set of narrow-band signals with different time scales, HHT
describes the signal from a multiresolution perspective and
obtains accurate and instantaneous values for the fre-
quency and amplitude.19 Therefore, the introduction of
HHT into the diagnosis of different stages of MCI may
improve the diagnostic performance.

Alterations in the frequency of the BOLD signal is related
to cognitive decline.20 Therefore, in the present study, we
hypothesized that the BOLD signal frequencies were altered
within a narrow band in distinct brain regions during the

progression of MCI. We used HHT to decompose the BOLD
signal into a set of intrinsic components and assessed Hilbert
weighted frequencies as features to test this hypothesis. Then,
we used an SVM to classify eMCI and lMCI and identified
the brain regions that were related to the progression of MCI.
The experimental results obtained from 141 subjects with
baseline rs-fMRI data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) (http://adni.loni.usc.edu/) con-
firmed that our method not only achieved satisfactory
classification performance but also detected diverse and com-
prehensive oscillation properties of distinct brain regions.
The rest of the paper is organized as described below. In Sec-
tion 2, we briefly describe the data used in this study, present
the methods of the Hilbert-Huang transform and classifica-
tion framework and describe the method used to compare dif-
ferent combination strategies. In Section 3, we introduce
experimental results for the classification performance of dif-
ferent combination strategies, the robustness of the frame-
work, effects of various parameters, important brain regions
and major differences in brain regions and frequencies. In
Section 4, we present a discussion of different combination
strategies, the effects of various parameters, the robustness of
the framework, physical meaning of features, and the associa-
tions of differential brain regions with disease development.
Finally, we describe the conclusions based on the findings in
Section 5.

2. MATERIALS AND METHODS

The procedure used in the present study comprises three
main steps, including (a) image preprocessing, (b) feature
extraction using the Hilbert-Huang transform, and (c) SVM-
based classification. In this section, we first introduce the
data used in this study and then present a detailed description
of each step. Figure 1 shows the steps of the proposed frame-
work.

2.A. Subjects

In this study, we analyzed baseline rs-fMRI data from
141 subjects, including 77 patients with early MCI (eMCI)
and 64 patients with late MCI (lMCI), from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) database.
The ADNI database is mainly used for the early detection
and tracking of Alzheimer’s disease, and provides a plat-
form for data sharing among people around the world.
According to its own medical classification standard, the
ADNI divides MCI into two stages: early MCI (eMCI) and
late MCI (lMCI). All rs-fMRI data were acquired at multi-
ple sites on 3.0 Tesla Philips scanners (with various mod-
els/systems). The image resolutions for the X and Y
dimensions ranged from 2.29 to 3.31 mm and the slice
thickness was 3.31 mm. The TR (repetition time) was 3.0 s
for all subjects, and the TE (echo time) was 30 ms. The
number of volumes for each subject was 140. The demo-
graphic and clinical characteristics of the studied subjects
are presented in Table I.
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2.B. Image preprocessing

Resting-state fMRI data were preprocessed using
DPARSF (http://www.rfmri.org/dpabi), which was imple-
mented in MATLAB software (MathWorks Inc., Sherborn,
MA). The fMRI images were corrected for slice timing, rea-
ligned and corrected for voxel-specific head motion. All sub-
jects in the study exhibited a maximal displacement of
<2.0 mm along each axis, and an angular motion of
<2.0° along each axis. Then, the results were smoothed by a
kernel with a full width at half maximum (FWHM) of
[4 voxels, 4 voxels, 4 voxels] (each voxel represents a
3 mm 9 3 mm 9 3 mm square in the brain). Thus, the ker-
nel is a three-dimensional Gaussian function with a full width
at half maximum of 4 voxels relative to each axis. Finally, the
entire brain of each subject in the rs-fMRI space was parcel-
lated into 116 regions of interest (ROIs) by applying the
Anatomical Automatic Labeling (AAL) template21 to the rs-
fMRI image of each subject using the DPARSF package. For
each of the 116 ROIs, the mean rs-fMRI time-series were cal-
culated by averaging the BOLD signals among all voxels
within the specific ROI. Due to the instability of the physical
factors such as voltage and magnetic field after starting the
machine, the initial fMRI scans were unstable. Therefore, the

first 10 data points (30 s) in the BOLD time-series data were
discarded, and 130 data points remained in the final data.

2.C. Feature extraction

After pre-processing, we focused on methods designed to
extract the frequency feature of BOLD signals. We used the
HHT to decompose and demodulate BOLD signals, then cal-
culated the Hilbert weighted frequency as the feature.

The HHT consists of two main parts: empirical mode
decomposition to decompose and Hilbert transform to ana-
lyze. Empirical mode decomposition (EMD) is the core of
the HHT.19 It utilizes the information from extreme points in
the sequence to achieve multiscale decomposition, extracting
the natural oscillation of the signal in the time domain, which
is called the intrinsic mode function (IMF). It is considered
an efficient description of the intrinsic components of time-
series and has been widely used in many disciplines.22 Unlike
Fourier-based analyses of time-series data, the HHT does not
contain a priori assumptions about the basic function type of
the time-series data space, therefore the HHT is an adaptive
method that is good at analyzing nonlinear and nonstationary
signals, including multiple scale components.23

2.C.1. Empirical mode decomposition

Decomposition was performed using a filtering process to
decompose the original time-series data into a finite set of
IMFs. In general, empirical mode decomposition involves
several steps. (a) The cubic spline interpolation is performed
on the maximum and minimum values of the time-series,
respectively, to obtain the upper and lower envelopes. Then,
the upper and lower envelopes are averaged to obtain an aver-
age envelope. (b) The difference between the original

FIG. 1. Illustration of the proposed framework, including (1) image preprocessing, (2) feature extraction using the Hilbert-Huang transform, and (3) support vec-
tor machine-based classification

TABLE I. Basic characteristics of the subjects.

Group Male/female Age (Mean � SD) MMSE (Mean � SD)

eMCI 32/45 72.4 � 7.2 28.3 � 1.4

lMCI 37/27 71.8 � 7.7 27.9 � 1.8

p-value 0.055 0.633 0.193

MMSE: mini-mental state examination.
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sequence and the average envelope is set as the first IMF. (c)
The average envelope is used as a time-series to perform the
steps described above until the remaining time-series is a
straight line or a monotonic function. Using the remainder as
a residual, the time-series is decomposed into a series of
IMFs and calculated using the following equation:

X tð Þ ¼
Xn
i¼1

Si þ rn (1)

where X(t) is the original signal, Si is the ith IMF, and rn is
the residual. A typical BOLD signal along with its intrinsic
mode function and residual are shown in Fig. 2.

2.C.2. Extension of end points

The EMD calculates the envelope using the local extre-
mum information in the process of decomposing the signal.
However, the local extremum is always missing at the end of
the signal, and thus a fitting error may be generated at the
end point. As the decomposition progresses, the error will
become larger and eventually distort the result, which is
called the endpoint effect. We extended the time-series using
the least squares support vector machine (LS-SVM) as

described below to reduce the endpoint effect. (a) The k
points at the left (right) endpoint are used as the training set.
(b) The predicted characteristics of LS-SVM are used to
extend a data point. (c) The steps listed above are repeated N
times. The decomposition result was obtained by intercepting
the extension after EMD.

To measure the quality of decomposition, The orthogonal-
ity index Ort was applied to measure the quality of decompo-
sition and was calculated using the following equation:

Ort ¼
XT
t¼1

Xnþ1

i¼1

Xnþ1

j¼1

Si tð ÞSj tð Þ
X2 tð Þ

 !
; i 6¼ jð Þ (2)

where the residual rn was also viewed as an IMF, in which
case X tð Þ ¼Pnþ1

i¼1 Si.
Since N was defined as the length of the extension here, N

was an integer in a certain section to improve the classifica-
tion performance. For each BOLD signal, we changed N
inside the section to obtain the decomposition result with the
minimum Ort and used this value as the final decomposition
result. We performed a grid search to identify the best param-
eters. The range of k was set to 4-10 and the range of N was
set to [0-10, 10-20, 20-30, 30-40, and 40-50].

FIG. 2. Empirical mode decomposition of a blood oxygen level-dependent signal. The decomposition yielded seven intrinsic mode functions and a residual trend
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2.C.3. Analysis of the Frequency and Amplitude of
IMFs

Each IMF was viewed as a narrow-band amplitude and
frequency modulated signal represented by S(t), and was cal-
culated using the following equation:

S tð Þ ¼ A tð Þ cosu tð Þ (3)

where the instantaneous amplitude A and phase u were
obtained using the Hilbert transform of S, defined as

SH tð Þ ¼ 1
p

Z
S sð Þ
t � s

ds (4)

A tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 tð Þ þ S2H tð Þ

q
(5)

u tð Þ ¼ arctan
SH tð Þ
S tð Þ (6)

The derivative of the phase function is the instantaneous
frequency in the usual sense, which is defined as

x tð Þ ¼ du tð Þ
dt

(7)

Thus, the original BOLD signal X was calculated as the
sum of all IMFs and residual r

X tð Þ ¼
Xk
j¼1

Aj tð Þ exp i
Z

xj tð Þdt
� �

þ r (8)

where k is the total number of IMFs, xj and Aj represent the
instantaneous frequency and the instantaneous amplitude of
the jth IMF respectively. Regarding the numerical instability
in the Hilbert transform and arctangent function calculation,
a direct orthogonal method is always used to replace Hilbert
transform and arctangent function operation with cubic spline
interpolation and derivative operation, as described in the
Appendix.24,25 We used the instantaneous frequency and
amplitude of IMF2 shown in Fig. 1 as an example. The result
is presented in Fig. 3.

2.C.4. The Hilbert weighted frequency (HWF)

For a particular IMF with an instantaneous frequency x ið Þ
and instantaneous amplitude a ið Þ, we calculated the Hilbert
weighted frequency26 as follows:

HWF ¼
Pm

i¼1 x ið Þa2 ið ÞPm
i¼1 a

2 ið Þ (9)

where m was the length of time-series. Each signal was repre-
sented as a vector consisting of HWF. The first few HWFs of
the BOLD signal in all brain regions were combined as fea-
tures for further classification.

2.D. Classification model for diagnosing MCI

In determining the MCI diagnosis, the amount of data was
far less than the feature dimension, and the data were sparsely

distributed in the feature space, which was not conducive to
improving the classification accuracy. Feature selection was
required before the classification to obtain better classifica-
tion results and more valuable features. We used an indepen-
dent two-sample t-test for feature selection, and then used
support vector machine (SVM) as the classification method,
which is described in detail below.

2.D.1. Feature selection

We compared each feature of eMCI and lMCI using an
independent two-sample t-test,27 and selected features with
significant differences. We assumed that each feature was
selected from the same distribution and calculated the p-val-
ues of all features. We performed Kolmogorov-Smirnov tests
(K-S tests)28 on all features to verify their normality, and then
calculated p-values using the independent two-sample t-test.
We assumed that random variable X displays a normal distri-
bution with mean l1 and variance r21 and random variable Y
displays a normal distribution with mean l2 and variance r22.
Given the means of the two variables, which are expressed as
X and Y, then X displays a normal distribution with mean l1
and variance r21/M and Y exhibits a normal distribution with
mean l2 and variance r22/L.

X�N l1;
r21
M

� �
(10)

Y �N l2;
r22
L

� �
(11)

where M and L are the number of samples of the two vari-
ables respectively. The symbol ~ represents that the random
variable exhibits some type of statistical distribution and N
indicates a normal distribution. Therefore,

X � Y �N l1 � l2;
r21
M

þ r22
L

� �
(12)

Replace the standard deviations r1 and r2 with sample
standard deviations SX and SY, and then

t
0 ¼ X � Yffiffiffiffiffiffiffiffiffiffiffiffiffi

S2X
M þ S2Y

L

q � t hð Þ (13)

Namely, t' exhibits a t-distribution with h degrees of free-
dom. The degrees of freedom h is calculated using the fol-
lowing formula:

h ¼ S2X
M

þ S2Y
L

� �2

=
S4X

M2 M � 1ð Þ þ
S4Y

L2 L� 1ð Þ
� �

(14)

The P-value is defined as the probability of obtaining a
more extreme value than t' under the t-distribution with h
degrees of freedom, which is calculated using the following
equation:

Pvalue ¼ Px� t hð Þ xj j � t
0�� ��� �

(15)
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We sorted these P-values in ascending order and selected
the first few features.

2.D.2. Support vector machine

Since Cortes and Vapnik proposed the Support Vector
Machine (SVM) technique,29 it has been widely used in brain
science research to solve the binary classification prob-
lem.27,30–38 The decision function of SVM is shown as fol-
lows:

Y xkð Þ ¼ sign
XK
i¼1

aiyi:K xk; xið Þ þ b

( )

where Ƙ represents the kernel function. The solution of SVM
aims to minimize the objective function of the following opti-
mization problems and calculate ai:

min
a

1
2

PN
i¼1

PN
j¼1

aiaj:yiyj:K xi; xj
� 	�PN

i¼1
ai

s:t:0� ai �CPN
i¼1

aiYi ¼ 0

(17)

where C is a regularization parameter that represents the
importance of outliers. The tradeoff between margin and mis-
classification error is controlled by this parameter.

In the experiment, we used the leave-one-out cross-valida-
tion (LOOCV) approach to measure the classification effect.
In each fold, one subject was used as the test set, and the
others were used as the training set for feature selection and
classification. The procedure was repeated until every subject
participated in the experiment as the test set. Then, we calcu-
lated the classification accuracy.

2.E. Comparison of different combinations of
strategies

We used three methods to analyze the BOLD signal
and to compare the performance of different signal pro-
cessing methods and classifiers: the short-time Fourier
transform,39 wavelet transform,40 and Hilbert-Huang trans-
form.

Specifically, we applied the short-time Fourier transform
by dividing the BOLD signal into segments with a length of
2M to capture multiscale information. Because the length of
the BOLD signal was set to 130, M = 1, 2, 3. . .7, and the last
two points of BOLD signal were discarded.

After obtaining multiscale spectrum information by using
the short-time Fourier transform and wavelet transform, the
weighted frequency was extracted as a feature. Similar to
HWF, the weighted frequency for spectral information at each
scale was defined as the sum of the product of frequency and
the square of the amplitude divided by the sum of the square
of the amplitude.

We applied four classification methods to classify features:
support vector machine, logical regression,41 random forest,42

and back propagation neural network.43 By combining these
three signal processing methods with the four classification
methods we obtained 12 different combination strategies.
Then, we compared the classification performance of these
combination strategies.

3. RESULTS

We calculated the accuracy (total correct rate), specificity
(correct rate of lMCI), and sensitivity (correct rate of eMCI)
to validate the classification performance. The three numbers

FIG. 3. Instantaneous amplitude and frequency of intrinsic mode function 2
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in each cell of the tables below represent the sensitivity,
specificity, and accuracy respectively.

3.A. Classification performance of different
combination strategies

Table II shows the classification results of 12 different
combination strategies using three signal processing methods
(short-time Fourier transform, wavelet transform, and Hil-
bert-Huang transform) and four classification methods (sup-
port vector machine, logical regression, random forest, and
back propagation neural network). Since classification is con-
sidered as a Bernoulli process with a probability p, where p
is the true accuracy rate, the classification of the sample set is
viewed as a binomial distribution experiment with an
expected value of Np and a variance of Np (1 � p), where N
is the number of samples. Therefore, for a single classifica-
tion accuracy rate acc, acc (1 � acc) approximates the vari-
ance of the classification. We assumed that other strategies
have the same classification accuracy as HHT + SVM and
used independent two-sample t-tests to obtain p-values. We
used the false discovery rate (FDR) correction here to com-
pare the classification performance of other strategies with
HHT + SVM and avoid possible errors associated with mul-
tiple comparisons.

3.B. Effects of various parameters

In this section, we mainly discuss the effects of method
parameters on the results. Three parameters are able to be
adjusted in the experiment: the number of features, the num-
ber of IMFs, and the SVM kernel function parameter. We
used three indicators of the classification, accuracy, speci-
ficity, and sensitivity, to evaluate the classification results.

3.B.1. Number of features

Figure 4 shows the effect of the number of selected fea-
tures on the classification results of eMCI compared with
lMCI. At a confidence level of 0.05, all features exhibited
normal distributions. Therefore, we sorted all P-values in
ascending order and selected the first few features for classifi-
cation. We set the number of IMFs to 5 and used the linear
kernel function in SVM to investigate the effects of the num-
ber of selected features. As shown in Fig. 4, the classification
performance presented a bell-shaped trend as the number of
features changed. When the number of features was set to 30,
the method achieved the best classification performance,
obtaining results with an accuracy, specificity, and sensitivity
of 87.94%, 82.81%, and 92.21%, respectively, in distinguish-
ing eMCI from lMCI.

3.B.2. Number of IMFs

Figure 5 shows the effect of the number of IMFs on the
results of the classification of eMCI and lMCI. Here, the
number of features was set to 30 and the linear kernel func-
tion was used in SVM. As shown in Fig. 5, the accuracy var-
ied substantially with the number of IMFs, indicating that the
method is sensitive to this parameter. The selection of the top
five IMFs as the best choice for the classification of eMCI
and lMCI.

3.B.3. SVM kernel function parameter

Figure 6 shows the effect of the Radial Basis Function
(RBF) parameters on the results of the classification of eMCI
and lMCI. We used an RBF with different full width at half
maximum (FWHM) values as the kernel function in SVM.

TABLE II. Classification results of different combination strategies.

SVM
Logistic
regression

Random
forest

Back
propagation

neural
network

Short time
Fourier
transform

59.74% 57.14% 71.43% 58.44%

43.75% 39.06% 54.69% 45.31%

52.48%
(P = 0.0005)

48.94%
(P = 0.0004)

63.83%
(P = 0.0006)

52.48%
(P = 0.0006)

Wavelet
transform

61.04% 61.04% 71.43% 68.83%

53.13% 42.19% 56.25% 56.25%

57.45%
(P = 0.0005)

52.48%
(P = 0.0005)

64.54%
(P = 0.0007)

63.12%
(P = 0.0006)

Hilbert-
Huang
transform

92.21% 87.01% 79.22% 80.02%

82.81% 78.12% 71.88% 65.62%

87.94% 71.88%
(P = 0.0011)

75.89%
(P = 0.0013)

73.62%
(P = 0.0015)

The method combining the Hilbert-Huang transform with SVM is superior to the
other strategies.
Bold indicate that the Hilbert-Huang transform and SVM combination strategy
achieved the best classification performance.

FIG. 4. The relationship between the classification and the number of
selected features in the early mild cognitive impairment (eMCI) vs lMCI
classification. Accuracy: total correct rate; specificity: correct rate of lMCI;
sensitivity: correct rate of eMCI
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Notably, even the best classification performance of SVM
obtained using the RBF kernel function was worse than the
SVM with the linear function, indicating that the features are
complex and sufficiently separable using a linear function to
effectively calculate the classification surface using only the
linear kernel function.

3.B.4. Other parameters

Three other parameters were included in the experiment,
two in end point extension, training set length k, and

extension length N, and one in SVM, the regularization
parameter C. We performed a grid search to identify the best
values of k and N. When k was set to 7 and N was set to 20–
30, we obtained the best classification performance. The
value of C ranged from 0.1 to 0.7 to explore its effect on the
classification results. Table III shows the effect of parameter
C, and the best choice of C in this experiment was 0.4.

In particular, we varied the number of hidden layers of
neural network from 1 to 6 to explore the relationship
between the depth of the neural network and classification
results. Table IV shows the changes in the classification
results with the increase in the neural network depth.

3.C. Robustness of the framework

We added white noise to the BOLD signal to test the
robustness of the framework and obtained the classification
performance of the framework. The standard deviation of the
white noise was set to d times the BOLD signal. We explored
the change in the classification results of the framework when
d increased from 0 to 0.45. The results are shown in Table V.

3.D. Important brain regions

In this section, we explore the important features of the
eMCI vs lMCI classification in our proposed method. Since
we used the accuracy of the leave-one-out cross-validation
(LOOCV) approach, we defined the brain regions whose
IMF features were selected by all LOO folds as important
brain regions. First, the features of each brain region were
inspected using independent two-sample t-tests in all LOO
folds. Then, the features with significant differences were
selected under the condition of a confidence level of 0.05. In
the linear kernel SVM classification, the averaged weights of
the SVM corresponding to these features were used to mea-
sure their importance. Table VI shows the importance of
these IMFs in important brain regions.

As shown in Table VI and Fig. 7, the important IMFs
were concentrated in IMF3, which includes the orbitofrontal
superior frontal gyrus, opercular inferior frontal gyrus, trian-
gular inferior frontal gyrus, olfactory cortex, cuneus, lingual
gyrus, middle occipital gyrus, postcentral gyrus, crus I and
lobule VIII of the cerebellar hemisphere. Additionally, IMFs
that were very important in other indexes were identified,
including IMF2 in the orbitofrontal superior frontal gyrus
(0.9907), IMF4 in the insula (1.1703) and IMF5 in lobule III
of the vermis (0.7594). The locations of ROIs corresponding
to the important IMFs are shown in Fig. 8.

3.E. Major differences in brain regions and
frequencies

We inspected the IMF features of each brain region using
an independent two-sample t-test and obtained the ROIs with
significantly different IMF features between eMCI and lMCI
along with their Hilbert weighted frequencies to identify the

FIG. 5. The relationship between the classification and the number of intrin-
sic mode functions in the early mild cognitive impairment (eMCI) vs lMCI
classification. Accuracy: total correct rate; specificity: correct rate of lMCI;
sensitivity: correct rate of eMCI

FIG. 6. The relationship between classification and radial basis function
(RBF) kernel function parameters in the early mild cognitive impairment
(eMCI) vs lMCI classification. RBF kernel function parameter: the full width
at half maximum of RBF. Accuracy: total correct rate; specificity: correct rate
of lMCI; sensitivity: correct rate of eMCI
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major brain regions showing differences. Table VII shows
the results.

As shown in Table VII, most of the important IMFs of dis-
tinct brain regions exhibited obvious differences in two cate-
gories with relatively small p-values, which verified the
important role of these IMFs in classification. As shown in
Table VII, during the progression of MCI, the Hilbert
weighted frequencies were increased in ROIs such as the pre-
central gyrus, opercular superior frontal gyrus, triangular
inferior frontal gyrus, hippocampus, parahippocampal gyrus,
cuneus, middle occipital gyrus, fusiform gyrus, inferior pari-
etal angular gyrus, angular gyrus, precuneus and caudate
nucleus, but were decreased in the orbitofrontal superior
frontal gyrus, rolandic operculum, olfactory cortex, insula,
lingual gyrus, inferior occipital gyrus, postcentral gyrus, and
temporal pole (superior). Remarkably, the HWF features of
all cerebellar ROIs, such as R.crus I, crus II, lobule III, lobule
VIII, lobule X of the cerebellar hemisphere, and lobule III of

TABLE III. The effect of C on classification results.

Value of C 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Classification results 87.01% 88.31% 90.91% 92.21% 89.61% 89.61% 89.61%

79.69% 81.25% 82.81% 82.81% 82.81% 84.38% 82.81%

83.69% 85.11% 87.23% 87.94% 86.52% 87.23% 86.52%

When C was set to 0.4, the best classification result was achieved.
Bold indicate that the framework achieved the best classification performance when C was set to 0.4.

TABLE IV. The relationship between the number of hidden layers and classi-
fication results.

Number of
hidden layers 1 2 3 4 5 6

Classification
results

80.02% 74.03% 75.32% 72.73% 76.62% 75.32%

65.62% 68.75% 70.31% 67.19% 60.94% 56.25%

73.62% 71.63% 73.05% 70.12% 69.50% 66.67%

The classification performance decreases as the number of neural network layers
increases.

TABLE V. The relationship between the classification and the added white
noise.

White noise 0 0.05 0.1 0.15 0.2

Classification results 92.21% 85.71% 84.42% 79.22% 67.53%

82.81% 81.25% 78.13% 68.75% 67.19%

87.94% 83.69% 81.56% 74.47% 67.38%

White noise 0.25 0.3 0.35 0.4 0.45

Classification results 63.63% 61.04% 57.14% 55.84% 45.45%

65.63% 64.06% 48.44% 40.62% 43.75%

64.54% 62.41% 53.19% 48.94% 44.68%

The unit of noise is the standard deviation (SD) of the BOLD signal. As the stan-
dard deviation of the white noise increases, the classification ability of the frame-
work decreases, and ultimately it will fail.

TABLE VI. Important IMFs of distinct brain regions and their averaged SVM
weights in the classification of eMCI and lMCI.

ROI IMF index Weight

L.Orbitofrontal superior frontal gyrus IMF2 0.9907

L.Orbitofrontal superior frontal gyrus IMF3 0.4076

L.Opercularis inferior frontal gyrus IMF3 -0.1329

L.Triangular inferior frontal gyrus IMF3 -0.7773

R..Olfactory cortex IMF3 0.7629

R. Insula IMF4 1.1703

R.Hippocampus IMF4 -0.6426

R. Parahippocampal gyrus IMF2 -0.5533

R. Cuneus IMF3 -0.5156

L.Lingual gyrus IMF3 -0.0167

L. Middle occipital gyrus IMF1 -0.3658

L. Middle occipital gyrus IMF3 -0.4505

L.Inferior occipital gyrus IMF2 0.1307

L. Postcentral gyrus IMF3 0.0839

R.Angular gyrus IMF4 -0.5715

R.Crus Ⅰ of cerebellar hemisphere IMF3 0.6111

L.LobuleⅢ of cerebellar hemisphere IMF5 0.5460

L.LobuleⅧ of cerebellar hemisphere IMF3 0.2879

LobuleⅢ of vermis IMF5 0.7594

L. = Left, R. = Right.
Bold indicate that highlights ROIs and IMFs with high weight in the SVM classi-
fication.

FIG. 7. The distribution of important intrinsic mode functions (IMFs) in dif-
ferent IMF indexes
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the vermis, significant decreased during the progression of
MCI.

4. DISCUSSION

4.A. Different combination strategies

Fourier transform is a global transform method, and it is
unable to easily transform nonstationary signals. Short-time
Fourier transform divides the signal into small segments, in
which the nonstationary signal is approximately regarded as
the stationary signal. However, this approximation is unable to
characterize the features of nonstationary signals. Wavelet
transform sufficiently describes the local characteristics of the
signal, but it is still based on the Fourier transform, which is
unable to simultaneously improve the temporal resolution and
frequency resolution. The Hilbert-Huang transform is an adap-
tive method. Based on the instantaneous frequency and ampli-
tude, the Hilbert-Huang transform simultaneously improve the
temporal resolution and frequency resolution.25 Therefore, the
Hilbert-Huang transform more accurately describes the charac-
teristics of nonstationary signal. As shown in Table II, the clas-
sification results obtained using the Hilbert-Huang transform
are significantly better than the other two methods. Regarding
the classification method, SVM shows a higher classification
accuracy than other methods. These findings confirm the
effectiveness of the classification framework combining the
Hilbert-Huang transform with SVM.

4.B Effects of various parameters

In this section, we mainly discuss the effects of different
parameters on the results. In the experiments, three

parameters, including the number of features, the number of
IMFs and SVM kernel parameters, substantially affected the
results. When we set the number of features to 30, the number
of IMFs to 5 and used the linear kernel function, we obtained
the best classification performance for the comparison of
eMCI with lMCI, and the accuracy, specificity, and sensitiv-
ity were 87.94%, 82.81%, and 92.21% respectively. We used
the average change rate, namely, the quotient of the total
change in classification accuracy and the total change in the
parameters, to quantify the effect of changes in these parame-
ters on the classification results. As shown in Figs. 4–6, the
classification performance presents a relatively stable trend
with the change in feature number (average change rate:
3.48%), while it changes rapidly with the number of IMFs
(average change rate: 10.35%). A potential explanation for
this finding is that changes in the number of IMFs may lead
to tremendous changes in the total number of features. For
this experiment, when the number of IMFs changes by 1, the
feature number would increase or decrease by 116 before fea-
ture selection. The use of an inappropriate number of IMFs
will result in a substantial loss of valid information or serious
concealment, decreasing the classification performance.
Therefore, the choice of the appropriate number of IMFs is
very important. According to Fig. 5, the best strategy in this
experiment was to select the first five IMFs. In theory, the
classification performance of nonlinear kernels is similar to
linear kernels.29 However, as shown in Fig. 6, we were
unable to obtain the best classification results with parame-
ters that have not been carefully selected. Thus, the features
we extracted are complex and sufficiently separable using a
linear kernel to effectively calculate the classification surface
using only the linear kernel function. In particular, as shown

FIG. 8. The locations of regions of interests (ROIs) corresponding to the important intrinsic mode function (IMFs) from IMF1 to IMF5. Each row shows the
locations of ROIs corresponding to important IMFs of different indexes, and different colors represent different ROIs
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in Table IV, classification results became worse as the depth
of the neural network increased, potentially because the con-
nection weights in the neural network to be trained increase
as the depth of the neural network increases. However, the
amount of data is unable to meet the requirements of training,
and thus many weights lead to a decrease in classification
accuracy.

4.C. Robustness of the framework

As shown in Table V, when the noise increased from
0 to 0.1 SD, the classification accuracy decreased from

87.94% to 81.56%, but still maintained the effectiveness of
classification. When the noise further increased to 0.45 SD,
the classification accuracy decreased to 44.68%, and the
framework totally lost the classification ability. Thus, this
framework has a certain anti-noise ability and still maintains
a relatively strong classification ability when the noise is <0.1
SD. However, under conditions with a high level of noise, the
classification ability of the framework will continue to
decline and ultimately the framework will fail.

4.D. Physical meaning of features

As an adaptive method, the HHT decomposes multicom-
ponent signals into single-component signal components,
that is, IMF, with time scale ranging from small to large val-
ues. IMF has the characteristics of a local narrow band, which
more accurately describes the time-frequency characteristics
of multicomponent signals.25 Each IMF has its own clear
physical meaning, but further studies are needed to identify
these physical meanings.25 The Hilbert weighted frequency
effectively reflects the average frequency fluctuation charac-
teristics of local narrow-band signals, and it is a robust fea-
ture.26 The eigenvector composed of the Hilbert weighted
frequencies of multiple IMFs with a time scale ranging from
small to large values shows the amplitude-frequency distribu-
tion characteristics of fMRI signals in specific brain regions
in each frequency band, avoiding overlap and confusion
between frequency bands.26 It highlights the role of fre-
quency components in the main part of energy in a specific
frequency band; therefore, it is an accurate and complete
description of signals. As shown in Table VII, specific HWF
features were increased in cerebral ROIs, such as the precen-
tral gyrus, opercular superior frontal gyrus, triangular inferior
frontal gyrus, hippocampus, and parahippocampal gyrus, but
were decreased in the orbitofrontal superior frontal gyrus,
rolandic operculum, olfactory cortex, and insula. Frequency
features of all cerebellar ROIs, such as R.crus I, crus II, lob-
ule III, lobule VIII, lobule X of the cerebellar hemisphere,
and lobule III of the vermis, decreased significantly. By com-
bining the Hilbert weighted frequency vectors of all ROIs as
features and comparing them, we identified the differences in
the narrow frequency bands of distinct brain regions between
different stages of MCI, which is more conducive to further
analysis and research.

4.E. The association of different brain regions with
disease development

Few studies have investigated the changes in brain regions
at different stages of MCI. In this experiment, we identified
the brain regions displaying significant differences at differ-
ent stages of MCI, which were consistent with previous stud-
ies, including the cuneus, middle occipital gyrus,44 lingual
gyrus, insula, olfactory cortex, and inferior occipital gyrus.45

Differences in the parahippocampal gyrus, postcentral gyrus,
angular gyrus, and temporal pole (superior) have also been

TABLE VII. Different IMF features of distinct brain regions and p-values in
the classification of eMCI vs. lMCI.

ROI
IMF
index eMCI lMCI

P-
value

R.Precentral gyrus IMF2 0.03 0.0328 0.028

L.Orbitofrontal superior frontal
gyrus

IMF2 0.0389 0.036 0.022

L.Orbitofrontal superior frontal
gyrus

IMF3 0.0168 0.0147 0.009

L.Opercularis superior frontal
gyrus

IMF3 0.0142 0.0159 0.018

L.Triangular inferior frontal gyrus IMF3 0.0144 0.0162 0.014

L.Rolandic operculum IMF3 0.0162 0.0144 0.028

R.Olfactory cortex IMF3 0.0185 0.0163 0.008

R.Insula IMF4 0.0062 0.0052 0.026

R.Hippocampus IMF4 0.0056 0.0067 0.02

R. Parahippocampal gyrus IMF2 0.0336 0.0369 0.021

R. Cuneus IMF2 0.0336 0.0361 0.031

R. Cuneus IMF3 0.0148 0.017 0.003

L.Lingual gyrus IMF3 0.0154 0.0138 0.015

R.Lingual gyrus IMF2 0.0349 0.0336 0.035

L.Middle occipital gyrus IMF1 0.0484 0.052 0.006

L.Middle occipital gyrus IMF3 0.0139 0.0156 0.028

L.Inferior occipital gyrus IMF2 0.0384 0.0344 0.002

L.Fusiform gyrus IMF5 0.0009 0.0015 0.026

L. Postcentral gyrus IMF3 0.0137 0.0121 0.021

L. Postcentral gyrus IMF5 0.0016 0.001 0.045

L.Inferior parietal angular gyrus IMF1 0.0490 0.0516 0.03

R. Angular gyrus IMF4 0.0049 0.0061 0.003

R. Precuneus IMF1 0.0491 0.0514 0.038

L.Caudate nucleus IMF5 0.0014 0.0021 0.048

L.Temporal pole(superior) IMF4 0.0059 0.005 0.028

R.crus Ⅰ of cerebellar hemisphere IMF3 0.0160 0.0131 0.004

L.crus Ⅱ of cerebellar hemisphere IMF2 0.0373 0.0343 0.028

L.LobuleⅢ of cerebellar
hemisphere

IMF5 0.0020 0.0013 0.023

L.LobuleⅧ of cerebellar
hemisphere

IMF3 0.0149 0.0128 0.005

L.Lobule Ⅹ of cerebellar
hemisphere

IMF3 0.0160 0.0143 0.027

LobuleⅢ of vermis IMF5 0.0024 0.0014 0.008

L. = Left, R. = Right.
Bold indicate the ROI of the cerebellar region has a significant decrease in
frequency.
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reported in previous studies.13 We also observed differences
in other brain regions at different stages of MCI, such as the
precentral gyrus, orbitofrontal superior frontal gyrus, opercu-
lar superior frontal gyrus, triangular inferior frontal gyrus,
rolandic operculum, hippocampus, fusiform gyrus, inferior
parietal angular gyrus, precuneus and caudate nucleus.

In addition, some cerebellar areas have also been con-
firmed to display significant differences that were consistent
with previous studies, including lobule X of the cerebellar
hemisphere and lobule III of the vermis.13 Crus I, crus II, lob-
ule III, and lobule VIII of the cerebellar hemisphere also
exhibited significant changes during the progression of MCI.
As shown in Table VII, frequency features of all cerebellar
ROIs were significantly decreased. These results are consis-
tent with other neuroscience studies,46–48 confirming that the
cerebellum may be involved in human cognitive processes
and may provide useful information for the diagnosis of
MCI.

Notably, the BOLD signals in these brain regions have not
changed completely but were only altered in some narrow fre-
quency bands of the signals, which were accurately detected
using the HHT method. As shown in Fig. 7, the differences
in the whole brain range from IMF1 to IMF5 in different
stages of MCI, but the distributions of altered signals were
more concentrated in IMF3. Thus, the changes in frequency
observed during the progression of MCI are mainly attributed
to IMF3. On the other hand, as shown in Table VI, IMFs with
other indexes also contain HWF features with high weights,
such as the orbitofrontal superior frontal gyrus in IMF2,
insula in IMF4, and lobule III of the vermis in IMF5, indicat-
ing that other IMFs also provide important information for
the diagnosis of MCI. Based on these results, the frequency
features differ in distinct brain regions, and the method
described here will be more conductive to analyzing these
frequency features in actual patients in future studies.

4.F. Limitations

This study was subject to some limitations. First, the lim-
ited antinoise ability made this method relatively vulnerable
to the impact of noise. In future studies, denoizing methods
should be combined to improve the robustness of this
method. Second, the amount of data was relatively small and
the length of each time-series was relatively short (130 data
points). The TR (repetition time) of the dataset was 3.0 s,
and thus we were unable to examine the activities during a
shorter period. The lack of data limited the effect of the com-
bination of this method and deep learning. Larger datasets
and longer time-series may be needed to obtain more accu-
rate diagnostic results in future studies.

5. CONCLUSIONS

In this paper, we proposed a learning framework based on
the HHT for the classification of different stages of MCI.
Specifically, we first decomposed BOLD signals from each

brain region into a series of IMFs using the HHT, and
demodulated them to obtain the instantaneous amplitude and
frequency. Then, the Hilbert weighted frequency was calcu-
lated as a feature, and feature selection was performed using
the t-test. Finally, SVM was implemented for classification.
The proposed method effectively classified eMCI and lMCI.
Using this analysis, the main changes in rs-fMRI were
located in IMF3, and HWF characteristics showed a signifi-
cant decreasing trend in all cerebellar regions during the pro-
gression of MCI.
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APPENDIX 1

The direct orthogonal method first estimates the amplitude
by local extremum information, and then uses the frequency
modulation portion of the original signal and its orthogonal
component to estimate the frequency. Specifically, the follow-
ing steps are included:

1. For a single-component signal s(t), determine all the
maxima points of |s(t)|, mark as (tk, sk), k = 1, 2,⋯, M

2. All the extreme points are fitted with cubic splines, and
the resulting envelope function is recorded as a11(t).
Then s(t) can be standardized by a11(t), that is.

s1 tð Þ ¼ s tð Þ
a11 tð Þ (A1)

3. If s1(t) is not a pure FM signal, repeat the above pro-
cess n times until sn(t) is an FM signal, denoted as F(t).
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4. The instantaneous amplitude of the signal is defined as

A tð Þ ¼ s tð Þ
F tð Þ ¼ a11 tð Þa12 tð Þ. . .a1n tð Þ (A2)

After removing the amplitude modulation portion of the
original signal, the frequency modulation portion F(t) is
obtained, and the frequency is estimated by the following
steps.

1. For the single-component signal x(t), the FM portion F
(t) and its orthogonal component G(t) can be expressed
as

F tð Þ ¼ cosu tð Þ
G tð Þ ¼ sinu tð Þ



(A3)

2. Deriving on both sides,

F0 tð Þ ¼ �u
0
tð Þsinu tð Þ

G0 tð Þ ¼ u0 tð Þcosu tð Þ



(A4)

1. Since the instantaneous frequency is non-negative, the
instantaneous frequency x(t) can be calculated as fol-
lows:

x tð Þ ¼ u0 tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0 tð Þ2þG0 tð Þ2

q
(A5)
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